Abstract

AbstractTritiated amorphous and crystalline silicon is prepared by exposing silicon samples to tritium gas (T2) at various pressures and temperatures. Total tritium content and tritium concentration depth profiles in the tritiated samples are obtained using thermal effusion and Secondary Ion Mass Spectroscopy (SIMS) measurements. The results indicate that tritium incorporation is a function of the material microstructure rather than the tritium exposure condition. The highest tritium concentration attained in the amorphous silicon is about 20 at.% on average with a penetration depth of about 50 nm. In contrast, the tritium occluded in the c-Si is about 4 at.% with a penetration depth of about 10 nm. The tritium concentration observed in a-Si:H and c-Si is higher than reported results from post-hydrogenation experiments. The beta irradiation appears to catalyze the tritiation process and enhance the tritium dissolution in silicon material.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.