Abstract

Efficient design of a photocatalyst is an important step in realizing real world applications. In this work, using in-situ catalysis we have prepared and investigated a titanate nanotube (TiNT)/ graphitic carbon nitride nanocomposite, which after optimization shows excellent hydrogen production efficiency of 2.3 mmolg−1h−1, much improved compared to GCN, which achieved a rate of 0.56 mmolg−1h−1. We can conclude that pyrolysis of urea to carbon nitride also self catalyses the breakdown of TiNT into anatase TiO2 nanoparticles, resulting in a nanocomposite material comprising TiO2 and heterojunctions with GCN. After heating and modification the TiO2 shows a conduction band edge with a more negative potential than the H+/H2 potential, which along with the ideal position of the GCN CB edge facilitates hydrogen production under light irradiation. This novel method can be viewed as a general method for improving catalysis synthesis and design, whilst simultaneously reducing the complexity and energy footprint of active catalyst synthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.