Abstract
On-machine measuring (OMM) systems are being more and more applied in machine tools in order to measure workpieces on the machine itself. Many of these systems are directly mounted in the machine spindle, so the measuring uncertainty is affected by clamping positioning and orientation variations, especially when integrating optical systems based on machine vision. This paper presents a self-calibration technique for vision systems by using redundant information of on machine measurements, avoiding extra mechanical anchoring or calibration means. It has been applied to a vision system with the angular placement uncertainty of a tool holder coupling being the main uncertainty contributor. A milling machine pilot case has been selected for demonstration, showing an effective self-calibration capability both in laboratory and industrial conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.