Abstract

The self-calibration test known as the random ball test (RBT) is adapted and applied to instrument calibration for measurements of microrefractive lens figure error. The RBT exploits the symmetry properties of a microsphere, resulting in a low-uncertainty estimate of the instrument biases. One hundred surface patches on a 1-mm-diam steel sphere are imaged by commercial instruments then averaged together in software to determine the instrument bias for a 500-µm radius of curvature test piece. The results show biases on the order of a few hundred nanometers peak-to-valley for a scanning white light interferometer and a Twyman-Green interferometer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.