Abstract

Atomic magnetometry is one of the most sensitive ways to measure magnetic fields. We present a method for converting a naturally scalar atomic magnetometer into a vector magnetometer by exploiting the polarization dependence of hyperfine transitions in rubidium atoms. First, we fully determine the polarization ellipse of an applied microwave field using a self-calibrating method, i.e., a method in which the light-atom interaction provides everything required to know the field in an orthogonal laboratory frame. We then measure the direction of an applied static field using the polarization ellipse as a three-dimensional reference defined by Maxwell's equations. Although demonstrated with trapped atoms, this technique could be applied to atomic vapors, or a variety of atomlike systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.