Abstract

The development of a self-calibrating ratio fluorescence probe without the need for additional substrates is a major advancement in biosensing. In this study, at room temperature, a self-calibrating infinite coordination polymer (SSA-Tb-ATP ICPs) has been proposed by self-assembling adenosine triphosphate (ATP) with 5-sulfosalicylic acid (SSA) and Tb3+. Due to the antenna effect, SSA-Tb-ATP ICPs exhibited strong green fluorescence emission of Tb3+ (at 547 nm) and blue fluorescence emission of SSA (at 407 nm). This material offers several advantages over existing detection methods, including simplicity of synthesis and exceptional sensitivity. Our self-calibrating SSA-Tb-ATP ICPs demonstrated excellent performance in detecting alkaline phosphatase (ALP) and phosphate (Pi) in both serum and environmental samples with detection limits of 0.076 U/L and 0.025 μM, respectively. Moreover, we successfully employed the SSA-Tb-ATP ICPs to perform cellular imaging of ALP in both hepatocellular carcinoma cells (HepG2) and normal liver cells (LO2), representing a significant advancement in ALP detection and imaging. The simplicity of the synthesis and high sensitivity make this probe a promising tool for early diagnosis of hepatocellular carcinoma in clinical settings and environment analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call