Abstract

Vaccination is among the most effective ways to prevent infectious diseases. Subunit vaccines are safe but usually require multiple booster shots, which may lead to immunity loss and economic consume. In this study, a self-boosting vaccine is developed based on the pulsatile release of antigen from the core-shell microparticle after single-injection immunization. Self-healing technology applied to form an "antigen core" can avoid organic solvents from destroying the spatial structure of the antigen. The "antigen shell" is built-up by self-assemble of the antigen with the opposite charged polypeptide. Primary immunization occurs with the self-assembled film disintegration, and the booster comes with the microparticle degradation. The changing of antigen-specific antibodies after immunization with the core-shell microparticle vaccine is consistent with that caused by the two shots of immunization. The immune effect and safety evaluation results support the translational potential of this self-boosting core-shell microparticle vaccine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call