Abstract

Magnetoelectric systems could be used to develop magnetoelectric random access memory and microsensor devices. One promising system is the two-phase 3-1-type multiferroic nanocomposite in which a one-dimensional magnetic column is embedded in a three-dimensional ferroelectric matrix. However, it suffers from a number of limitations including unwanted leakage currents and the need for biasing with a magnetic field. Here we show that the addition of an antiferromagnet to a 3-1-type multiferroic nanocomposite can lead to a large, self-biased magnetoelectric effect at room temperature. Our three-phase system is composed of a ferroelectric Na0.5Bi0.5TiO3 matrix in which ferrimagnetic NiFe2O4 nanocolumns coated with antiferromagnetic p-type NiO are embedded. This system, which is self-assembled, exhibits a magnetoelectric coefficient of up to 1.38 × 10–9 s m–1, which is large enough to switch the magnetic anisotropy from the easy axis (Keff = 0.91 × 104 J m–3) to the easy plane (Keff = –1.65 × 104 J m–3). A three-phase system that is composed of a ferroelectric Na0.5Bi0.5TiO3 matrix in which ferrimagnetic NiFe2O4 nanocolumns coated with antiferromagnetic p-type NiO are embedded exhibits self-biased magnetoelectric switching at room temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call