Abstract

This work presents a novel geometric framework for self-balancing as well as planar motion control of wheeled vehicles with two fewer control inputs than the configuration variables. For self-balancing control, we shape the kinetic energy in such a way that the upright direction of the robot’s body becomes a nonlinearly stable equilibrium for the corresponding controlled Lagrangian which is inherently a saddle point. Then for planar motion control of the robot, we set its position and attitude as an element of the special Euclidean group SE(2) and apply a logarithmic feedback control taking advantage of the Lie group exponential coordinates. For simulation and evaluating the controllers, the unified dynamic model of the self-balancing mobile robot (SMR) is developed using the constrained Euler-Lagrange equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.