Abstract

Medical microwave radiometry is a near-field passive thermometry technique that requires highly sensitive and stable receiver to gather and process the ultra-low power thermal radiation from biological tissues (−174 dBm/Hz). The noise measurements are susceptible to radio frequency interference (RFI) and influenced by variations in power reflection between the near-field antenna and radiometer input ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\rho $ </tex-math></inline-formula> ), instrument electronic noise ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\boldsymbol {T}_{ \boldsymbol {rec}}$ </tex-math></inline-formula> ), amplifier noise ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\boldsymbol {T}_{ \boldsymbol {A}}$ </tex-math></inline-formula> ), and system gain ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\boldsymbol {G}$ </tex-math></inline-formula> ). Design of a self-balanced dual frequency band Dicke radiometer is reported in this work with real time calibration to eliminate the influence of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\rho $ </tex-math></inline-formula> , <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${ \boldsymbol {T}}_{ \boldsymbol {rec}}, \boldsymbol {T}_{ \boldsymbol {A}}$ </tex-math></inline-formula> and gain ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\boldsymbol {G}$ </tex-math></inline-formula> ) on the unknown source temperature ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\boldsymbol {T}_{ \boldsymbol {S}}$ </tex-math></inline-formula> ). The radiometer is designed for operation over 1.2-1.5 GHz (low frequency/LF) and 2.8-3.1 GHz (high frequency/HF) for deep and superficial tissue temperature measurements, respectively. The radiometer measurements are characterized using matched load and ultra-wideband spiral antenna using tissue mimicking phantoms. The linearity of source temperature measurements for the matched load is close to 1 with root mean square error of 0.22 and 0.37 °C in LF and HF bands, respectively. Radiometer noise measurements using UWB antenna in tissue mimicking phantom confirm stable measurements and immunity to ambient RFI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.