Abstract

The self-avoiding walk on the square site-diluted correlated percolation lattice is considered. The Ising model is employed to realize the spatial correlations of the metric space. As a well-accepted result, the (generalized) Flory's mean-field relation is tested to measure the effect of correlation. After exploring a perturbative Fokker-Planck-like equation, we apply an enriched Rosenbluth Monte Carlo method to study the problem. To be more precise, the winding angle analysis is also performed from which the diffusivity parameter of Schramm-Loewner evolution theory (κ) is extracted. We find that at the critical Ising (host) system, the exponents are in agreement with Flory's approximation. For the off-critical Ising system, we find also a behavior for the fractal dimension of the walker trace in terms of the correlation length of the Ising system ξ(T), i.e., D_{F}^{SAW}(T)-D_{F}^{SAW}(T_{c})∼1/sqrt[ξ(T)].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.