Abstract

Self-avoiding walks and self-avoiding trails, two models of a polymer coil in dilute solution, have been shown to be governed by the same universality class. On the other hand, self-avoiding walks interacting via nearest-neighbour contacts (ISAW) and self-avoiding trails interacting via multiply visited sites (ISAT) are two models of the coil-globule, or collapse transition of a polymer in dilute solution. On the square lattice it has been established numerically that the collapse transition of each model lies in a different universality class. The models differ in two substantial ways. They differ in the types of subsets of random walk configurations utilized (site self-avoidance versus bond self-avoidance) and in the type of attractive interaction. It is therefore of some interest to consider self-avoiding trails interacting via nearest-neighbour attraction (INNSAT) in order to ascertain the source of the difference in the collapse universality class. Using the flatPERM algorithm, we have performed computer simulations of this model. We present numerical evidence that the singularity in the free energy of INNSAT at the collapse transition has a similar exponent to that of the ISAW model rather than the ISAT model. This would indicate that the type of interaction used in ISAW and ISAT is the source of the difference in the universality class.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.