Abstract

A signed network represents how a set of nodes are connected by two logically contradictory types of links: positive and negative links. In a signed products network, two products can be complementary (purchased together) or substitutable (purchased instead of each other). Such contradictory types of links may play dramatically different roles in the spreading process of information, opinion, behaviour etc. In this work, we propose a self-avoiding pruning (SAP) random walk on a signed network to model e.g. a user’s purchase activity on a signed products network. A SAP walk starts at a random node. At each step, the walker moves to a positive neighbour that is randomly selected, the previously visited node is removed and each of its negative neighbours are removed independently with a pruning probability r. We explored both analytically and numerically how signed network topological features influence the key performance of a SAP walk: the evolution of the pruned network resulted from the node removals, the length of a SAP walk and the visiting probability of each node. These findings in signed network models are further verified in two real-world signed networks. Our findings may inspire the design of recommender systems regarding how recommendations and competitions may influence consumers’ purchases and products’ popularity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.