Abstract

Dimerization of free acid and ester forms of disulfonated deuteroporphyrin is investigated in aqueous solution by absorbance and fluorescence spectroscopies. The dimerization equilibrium constant increases with the extent of esterification. In phosphate buffer saline (pH 7.4, 20 degrees C), it ranges from 1.4 x 10(6) M(-1) to 7.8 x 10(7) M(-1) for the free acid and the diethyl ester forms, respectively. The dimer formation is favored by an increase of ionic strength, as predicted by the Debye-Hückel law. The dimers display a marked shift to the blue of their Soret band. In agreement with the exciton model, a cofacial stacking of the molecules with some offset is postulated. The sulfonate groups on each molecule are likely to stand on opposite directions to reduce repulsion. Both the analysis of porphyrin self-association and careful examination of the fluorescence excitation spectra show that the dimers of disulfonated deuteroporphyrins do not fluoresce at all. The quantum yield of formation of singlet oxygen by the disulfonated deuteroporphyrins in deuterated methanol is 0.71, a value typical of monomers. In deuterated water, the yield is 0.44 for all the compounds studied though they are dimerized. The fact that nonfluorescent dimers of porphyrins can be efficient photosensitizers is emphasized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.