Abstract
The large-scale and efficient synthesis of MnPO4·H2O is an urgent problem to be solved. In this paper, self-assembled dumbbell-shaped MnPO4·H2O particles were successfully synthesized just using KMnO4 and commercial concentrated H3PO4, and then employed as the precursor to prepare LiMnPO4/C composites. The XRD, SEM, TEM, and electrochemical performance tests were used to investigate MnPO4·H2O and the corresponding LiMnPO4/C. The formation mechanism of MnPO4·H2O was discussed. The results showed that temperature and water content have a significant effect on the yield, purity, and morphology of MnPO4·H2O. The synthesized LiMnPO4/C with reduced carbon content at 650 °C delivered a discharge capacity of 109.3 mA h g-1 at 1 C and 104.3 mA h g-1 at 2 C. This green and efficient synthesis method of MnPO4·H2O provides a new idea for the large-scale preparation of LiMnPO4/C cathode materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.