Abstract

Carbon nanomaterials doped with N and B could activate nearby carbon atoms to promote charge polarization through the synergistic coupling effect between N and B atoms, thus facilitating adsorption of O2 and weakening O-O bond to enhance oxygen reduction reaction. Herein, a simple and controllable self-assembly strategy is applied to synthesize porous B, N co-doped carbon-based catalysts (BCN-P), which employs the macrocyclic molecule cucurbit[7]uril (CB7) as nitrogen source, and 3D aromatic-like closo-[B12H12]2- as boron source. In addition, polystyrene microspheres are added to help introduce porous structure to expose more active sites. Benefitting from porous structures and the synergistic coupling effect between N and B atoms, BCN-P has a high onset potential (Eonset=0.846 V) and half-wave potential (E1/2=0.74 V) in alkaline media. The zinc-air battery assembled with BCN-P shows high operating voltage (1.42 V), peak power density (128.7 mW cm-2) and stable charge/discharge cycles, which is even comparable with Pt/C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.