Abstract

Amphotericin B (AmB), one of the most powerful but also toxic drugs used to treat systemic mycoses, is believed to selectively permeabilize fungal cell membranes to ions in a sterol-dependent manner. Unfortunately, the structure of the biologically active AmB channels has long eluded researchers, obstructing the design of safer alternatives. Here, we investigate the structural and thermodynamic aspects of channel formation, stability, and selective ion conduction. We combine fluorescence lifetime imaging and molecular simulations to trace the process of channel assembly until the formation of stable, roughly octameric double-length channels (DLCs). This stoichiometry is confirmed by matching the predicted channel conductances with the past results of patch-clamp measurements. We then use free energy calculations to explain the effect of sterols on DLC stability and discuss the observed cation selectivity in structural terms, addressing several long-standing controversies in the context of their physiological relevance. Simulations of ion permeation indicate that only solvated ions pass through DLCs, revealing surprising solvation patterns in the channel lumen. We conclude our investigation by inspecting the role of the tail hydroxyl in the assembly of functional channels, pointing at possible origins of the cholesterol-ergosterol selectivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.