Abstract
Gel is a very diverse system that has pervaded our everyday life in a variety of forms. However, the mechanism of gel formation remains ambiguous. To better understand the mechanism of gel formation, cefpiramide was selected as model compound to investigate gel formation from molecular level, with the help of experimental research and molecular dynamics simulations. Dynamic light scattering was used to detect the process of the formation of fiber aggregates by the molecules in the gel process. The results indicated that in the process of low molecular weight gels, the molecules coalesce to form a fibrous network structure to wrap the liquid. Attenuated Total Reflectance Fourier Transform Infrared spectrometer and Raman spectroscopy were employed to explore the solute–solute and solute–solvent interactions, which indicated that the solvent molecules (formamide molecules) played a key role in the process of gel formation and the solute–solute interactions played a leading role. Finally, molecular dynamics simulations were employed to reveal the molecular mechanism of gel formation from molecular level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.