Abstract

Assemblies involving [Zr(C2O4)4]4– metallotectons (C2O42– = oxalate) and linear, flexible, or V-shaped organic cations (H2-Lx)2+ derived from the 1,4-bisimidazol-1-ylbenzene molecule have been envisioned to elaborate porous frameworks based on ionic H-bonds. Five architectures of formula [{(H2-L1)2Zr(C2O4)4}·2H2O] (1), [{(H2-L2)2Zr(C2O4)4}·6H2O] (2), [{(H2-L3)2Zr(C2O4)4}·6H2O] (3), [{(H2-L4)2Zr(C2O4)4}·H2O] (4), and [{(H2-L5)2Zr(C2O4)4}·6H2O] (5) (with L1 = p-bis(imidazol-1-yl)benzene, L2 = p-bis(2-methylimidazol-1-yl)benzene, L3 = p-bis(imidazol-1-yl)-2,5-dimethylbenzene, L4 = p-bis(imidazol-1-ylmethyl)benzene, L5 = m-bis(imidazol-1-yl)benzene) have been obtained; 1–3, and 5 show an open-framework. For all, the bisimidazolium cations (H2-Lx)2+ act as bridges between anionic complexes. Depending on the chemical features of the cation, various assembling patterns have been observed, yielding one-dimensional (1D) (2, 5) two-dimensional (2D) (1), or three-dimensional (3D) (3, 4) H-bonded networks. While interconnection of anionic metallotectons and organic cations generally affords grids with large apertures, 2D and 3D H-bonded frameworks show the lowest potential porosities (and even compact architectures) because of interpenetration. Highest potential solvent accessible voids (up to 20%) are found for the 1D H-bonded assemblages because interpenetration does not occur for these materials. Crystal structures for all five architectures as well as their thermal stabilities are reported. Actual porosity has been evidenced for one of them by solving the structure of the guest free architecture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.