Abstract

We report the self-assembly of the second-generation of nitroaryl-ended dendrons onto carbon surfaces. The immobilized layer was characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy and atomic force microscopy (AFM). The response was analyzed in comparison to the first-generation dendron behavior. Reduction of both layers generates the hydroxylamine product. The resulting redox-active layer exhibits a well-behaved redox response for the adsorbed nitroso/hydroxylamine couple. The thermodynamic of the adsorption of both dendrons on glassy carbon electrodes was also studied by CV. The Frumkin adsorption isotherm was the best to describe the specific interactions. The AFM images showed a network film formation with embedded aggregates that completely covered the carbon surface. The average height suggests a tilted preferential adsorption for both molecules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call