Abstract
In this work, the soluble cobalt phthalocyanine functionalized multiwalled carbon nanotubes (MWCNTs) are synthesized by π-π stacking interaction between tetrakis (3-trifluoromethylphenoxy) phthalocyaninato cobalt(II) (CoPcF) complex and MWCNTs. The physical properties of CoPcF-MWCNTs hybrids are evaluated using spectroscopy (UV-vis, XPS, and Raman) and electron microscopy (TEM and SEM). Subsequently, an amperometric nitrite electrochemical sensor is designed by immobilizing CoPcF-MWCNTs hybrids on the glassy carbon electrode. The immobilized CoPcF complex shows the fast electron transfer rate and excellent electrocatalytic activity for the oxidation of nitrite. Under optimum experimental conditions, the proposed nitrite electrochemical sensor shows the fast response (less than 2 s), wide linear range (9.6 × 10(-8) to 3.4 × 10(-4) M) and low detection limit (6.2 × 10(-8) M) because of the good mass transport, fast electron transfer rate, and excellent electrocatalytic activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.