Abstract
The anisotropy of the electronic interactions between fullerenes in crystalline solids was examined using a confocal fluorescence microscope by probing the polarization of the fluorescence emission arising from fullerene excimer-like emitting states. Crystals of C(60) obtained by vacuum-sublimation or from chloroform solution exhibited no or little polarization (p = 0 or 0.11, respectively), as expected from the high symmetry of the C(60) fcc lattice or the low degree of anisotropy induced by included solvent molecules. The use of hydrogen-bonding to supramolecularly control interfullerene electronic interactions was explored using a fullerene derivative (1) combining a solubilizing 3,4-di-tert-butylbenzene group and a barbituric acid hydrogen-bonding (H-B) moiety. The crystal structure of 1 establishes the existence of fullerene H-B tapes along which interfullerene electronic interactions are expected to be large. In agreement with this, we observe very strong polarization of the fullerene excimer-like emission (p = 0.78), indicative of a high degree of anisotropy in the fullerene interactions. The charge-carrier mobility of 1 as determined from OFET devices was found to be lower than that of C(60) (1.2 x 10(-4) vs 1.2 x 10(-2) cm(2)/s V), which is rationalized on the basis of the reduced dimensionality of 1 as a wire-like semiconductor and variations in the morphology of the device active layer revealed by AFM measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.