Abstract
Flexible surface-enhanced Raman scattering (SERS) substrates adaptable to strains enable effective sampling from irregular surfaces, but the preparation of highly stable and sensitive flexible SERS substrates is still challenging. This paper reports a method to fabricate a high-performance strain-adaptable SERS substrate by self-assembly of Au nanoparticles (AuNPs) on polydimethylsiloxane (PDMS) nanowrinkles. Nanowrinkles are created on prestrained PDMS slabs by plasma-induced oxidation followed by the release of the prestrain, and self-assembled AuNPs are transferred onto the nanowrinkles to construct the high-performance SERS substrate. The results show that the nanowrinkled structure can improve the surface roughness and enhance the SERS signals by ∼4 times compared to that of the SERS substrate prepared on flat PDMS substrates. The proposed SERS substrate also shows good adaptability to dynamic bending up to ∼|0.4| 1/cm with excellent testing reproducibility. Phenolic pollutants, including aniline and catechol, were quantitatively tested by the SERS substrate. The self-assembled flexible SERS substrate proposed here provides a powerful tool for chemical analysis in the fields of environmental monitoring and food safety inspection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.