Abstract

Polymer nanodiscs, especially with stimuli-responsive features, represent an unexplored frontier in the nanomaterial landscape. Such 2D nanomaterials are considered highly promising for advanced biomedicine applications. Herein, we designed a rod-coil copolymer architecture based on an amphiphilic, tadpole-like bottlebrush copolymer, which can directly self-assemble into core-shell nanodiscs in an aqueous environment. As the bottlebrush side chains are made of amorphous, UV-responsive poly(ethyl glyoxylate) (PEtG) chains, they can undergo rapid end-to-end self-immolation upon light irradiation. This triggered nanodisc disassembly can be used to boost small molecule release from the nanodisc core, which is further aided by a morphological change from discs to spheres.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call