Abstract

In this study, the self-assembly of rare-earth Anderson polyoxometalates (POMs) on the surfaces of imide polymeric hollow fiber membranes was designed for fabrication of novel POMs-functionalized interfacial composite membranes. The rare-earth Anderson POM ([Gd(H2O)7Cr(OH)6Mo6O18]n) nanoparticles with controllable size and distribution were successfully constructed. Experimental results revealed that the self-assembly was a surface-induced growth process. The silanol groups on the membrane surfaces generated by the (3-aminopropyl)trimethoxysilane pretreatment were essential for the self-assembly process because of the potential hydrogen bonding (OH⋯POMs) and coordination bonding (OHGd) interactions. This work provided a simple but practical method not only for the fabrication of novel POMs-functionalized membranes, but also for the synthesis of POMs nanoarchitectures. In addition, the potential application of the as-prepared POMs-functionalized hollow fiber membranes in degradation of organic pollutant has also been explored. The idea of interfacial membrane contactor has been utilized for the catalytic wet air oxidation of phenol under mild conditions. A three-phase (gas/catalyst/liquid) interface was successfully built up, which enhanced the catalytic efficiency. It is anticipated that these novel POMs-functionalized membranes can promisingly be used as catalytic membrane contactors for wastewater treatment under mild conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.