Abstract

As a kind of macroscopic boron nitride (BN) architectures, ultralight BN cellular materials with high porosity and great resilience would have a broad range of applications in energy and environment areas. However, creating such BN cellular materials in large sizes has still been proven challenging. Here, we report on the unique self-assembly of one-dimensional porous BN microfibers into an integral three-dimensional BN foam with open-cell cellular architectures. An ultrasonic-assisted self-assembly, freeze-drying, and high-temperature pyrolysis process has been developed for the preparation of cellular BN foam with a large size and desired shape. The developed BN foam has low density, high porosity (∼99.3%), great resilience, and excellent hydrophobic-lipophilic nature. The foam also exhibits excellent absorption capacities for a wide range of organic solvents and oils (wt % of ∼5130-7820%), as well as a high recovery efficiency (∼94%). Moreover, the unique hierarchical porous structure enables the foam to demonstrate a very low thermal conductivity (∼0.035 W/K/m). The excellent thermal insulation performance, superior mechanical property, and superb chemical and thermal stability enable the developed BN foam as an integrating multifunctional material in a broad range of high-end applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call