Abstract
We present a hybrid simulation method which allows one to study the dynamical evolution of self-assembling (co)polymer solutions in the presence of hydrodynamic interactions. The method combines an established dynamic density functional theory for polymers that accounts for the nonlocal character of chain dynamics at the level of the Rouse model, the external potential dynamics (EPD) model, with an established Navier–Stokes solver, the Lattice Boltzmann (LB) method. We apply the method to study the self-assembly of nanoparticles and vesicles in two-dimensional copolymer solutions in a typical microchannel Poiseuille flow profile. The simulations start from fully mixed systems which are suddenly quenched below the spinodal line. In order to isolate effects caused by walls, we use a reverse Poiseuille flow geometry with periodic boundary conditions. We identify three stages of self-assembly, i.e., initial spinodal decomposition, particle nucleation, and particle growth (ripening). We find that (i) in the presence of shear the nucleation of droplets is delayed by an amount roughly proportional to the shear rate, (ii) shear flow greatly increases the rates of particle fusions, and (iii) in later stages of self-assembly stronger shear flows may induce irreversible shape transformation via finger formation, in particular in vesicle systems. The combination of these effects leads to an accumulation of particles close to the center of the Poiseuille flow profile, and the polymeric matter has a double peak distribution centered around the flow maximum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.