Abstract
Piezo ion channels underlie many forms of mechanosensation in vertebrates and have been found to bend the membrane into strongly curved dome shapes. We develop a methodology describing the self-assembly of lipids and Piezo proteins into polyhedral bilayer vesicles. We validate this methodology for bilayer vesicles formed from bacterial mechanosensitive channels of small conductance, for which experiments found a polyhedral arrangement of proteins with snub cube symmetry and a well-defined characteristic vesicle size. On this basis, we calculate the self-assembly diagram for polyhedral bilayer vesicles formed from Piezo proteins. We find that the radius of curvature of the Piezo dome provides a critical control parameter for the self-assembly of Piezo vesicles, with high abundances of Piezo vesicles with octahedral, icosahedral, and snub cube symmetry with increasing Piezo dome radius of curvature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.