Abstract

AbstractAfter over a decade of research, the efficient synthesis and processing of layered organic/inorganic nanocomposites that mimic bone and shell structures remains an elusive goal of the materials chemist. We report on a rapid, efficient, continuous method to form layered nanocomposites via evaporation induced supramolecular self-assembly (SSA). During dip coating of a homogeneous sol containing alcohol or ether solvents, silica precursors, organic monomers, initiators and surfactant (at an initial concentration below cmc), solvent evaporation induces the formation of micellar structures that co-organize with silica to form cubic, hexagonal or lamellar mesophases. The organic monomers and initiators are solvated within the hydrophobic micellar interiors. Subsequent photo or thermal polymerization and washing results in a silica/polymer thin film nanocomposite. The microstructural and physical characteristics of these materials will be discussed in the context of potential applications as abrasion resistant coatings and optical hosts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call