Abstract

We investigate the self-assembly of amphiphilic nanoparticles (NPs) functionalized with mixed monolayers of hydrophobic and hydrophilic ligands in water. Unlike typical amphiphilic particles with "fixed" surface chemistries, the ligands used here are not bound irreversibly but can rearrange dynamically on the particles' surface during their assembly from solution. Depending on the assembly conditions, these adaptive amphiphiles form compact micellar clusters or extended chain-like assemblies in aqueous solution. By controlling the amount of hydrophobic ligands on the particles' surface, the average number of nearest neighbors--that is, the preferred coordination number--can be varied systematically from ∼ 1 (dimers) to ∼ 2 (linear chains) to ∼ 3 (extended clusters). To explain these experimental findings, we present an assembly mechanism in which hydrophobic ligands organize dynamically to form discrete patches between proximal NPs to minimize contact with their aqueous surroundings. Monte Carlo simulations incorporating these adaptive hydrophobic interactions reproduce the three-dimensional assemblies observed in experiment. These results suggest a general strategy based on reconfigurable "sticky" patches that may allow for tunable control over particle coordination number within self-assembled structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.