Abstract

Summary We have achieved the spontaneous assembly of alumina nanoparticles on a liquid metal surface and further synthesized a very-large-scale graphene single-crystal array. The effective electrical field established as a result of the electrical charge of the alumina nanoparticles in the liquid metal ensures the ordered self-assembly of the alumina islands and lays the foundation for precise spatial control of graphene nucleation, leading to the formation of graphene single-crystal arrays. In addition, controlling the density of the alumina in the liquid metal can precisely tune the periodicity of the arrays. This simple strategy, which is unlike the usual solid/aqueous solution system, opens up new territory for nanoparticle assembly. Focusing on the origin of the nanoparticle interaction that drives the self-assembly of ordered structure in the liquid metal system is a promising avenue for triggering more interesting applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.