Abstract

The previously described FliTrx E. coli flagellin protein was genetically engineered to display rationally designed histidine, arginine-lysine, and aspartic acid-glutamic acid peptide loops on the solvent-accessible outer domain region. The resulting flagellin monomers were self-assembled to obtain the corresponding oligomeric flagella bionanotubes in which the peptide loops were 5 nm apart. These flagella nanotubes were equilibrated with solutions of various metal ions (Co(II), Cu(II), Cd(II), Ag(I), Au(I), and Pd(II)). Controlled reduction of these metal ions yielded ordered arrays of nanoparticles or nanotubes, and in some cases, extensive aggregation resulted in formation of metal nanotube bundles. Both metal nanoparticles and nanotubes were generated with Cu(II) and Au(I), depending on the initial concentration of Cu(II) ions, while Ag(I) consistently formed metal nanowires, even under relatively mild conditions of reduction. The covalent attachment of separately synthesized Au nanoparticles to the f...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call