Abstract

A thorough search of the distribution pattern of Na, K, and Ca atoms on graphene surface, carried out using a synergistic combination of density functional theory and particle swarm optimization algorithm, yielded some unusual results. The equilibrium distribution is concentration and metal dependent; the metal atoms distribute uniformly when their coverage ratio M : C (M = Na, K, Ca) is 1 : 6, but Na and Ca atoms self-assemble to form parallel quasi-one-dimensional chains when their coverage is reduced to 1 : 8. At the higher concentration (M : C = 1 : 6), electron-phonon coupling calculations further show that the NaC6 is a superconductor with critical temperature of 5.8 K, which is the highest value among all the stable alkali or alkaline-earth metal decorated monolayer graphene systems studied to-date. At the lower concentration (M : C = 1 : 8) and depending on metal species, well-aligned atomic metal chains interact with graphene with varying intensity, making it possible to achieve either rigid or non-rigid band doping in graphene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.