Abstract

As a milestone in DNA self-assembly, DNA origami has demonstrated powerful applications in many fields. However, the scarce availability of long single-stranded DNA (ssDNA) limits the size and sequences of DNA origami nanostructures, which in turn impedes the further development. In this study, we present a robust strategy to produce long circular ssDNA scaffold strands with custom-tailored lengths and sequences. These ssDNA products were then used as scaffolds for constructing various DNA origami nanostructures. This scalable method produces ssDNA at low cost with high purity and high yield, which can enable production of custom-designed DNA origami for various applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.