Abstract

Catalytic hairpin assembly (CHA) and hybridization chain reaction (HCR) can achieve the high sensitivity and rapid reaction rate in detecting miRNA. However, the amplification efficiency by these methods are limited. Herein, an enzyme-free and label-free hyperbranched DNA network structure (HDNS) was designed, in which localized catalytic hairpin assembly (LCHA) and hybridization chain reaction occurred in the horizontal axis and longitudinal axis, respectively, exhibiting intensive signal dual-amplification. miRNA-122 was selected as the target on behalf of miRNA to design the HDNS sensor. The fluorescence signal change of HDNS showed good linearity for detecting miRNA-122 in the concentration range from 0.1 nM to 60 nM with a limit of detection (LOD) at 37 pM which was lower than those of the sensors based on separate CHA or HCR. Afterwards, the HDNS sensor was applied to detect miRNA-122 in serum samples with the recovery rate in the range of 97.2 %–107 %. The sensor could distinguish different kinds of miRNAs, even the family members with high sequence homology, exhibiting excellent selectivity. This method provided a novel design strategy for improving the sensitivity and selectivity of DNA sensor for miRNA detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.