Abstract

HypothesisThe microfluidic technology can drive molecules to organize into aggregates with nano-structures, and gives a possibility to control aggregate morphologies by adjusting hydrodynamic parameters of microfluidics. COMSOL Multiphysics is a useful software to simulate the mixing situation of solutions in microfluidic. Here, experiments and simulation are combined to study the self-assembly of gradient copolymers in the microfluidic device. ExperimentsFluorinated gradient copolymers self-assembled in a three-dimensional co-flow focusing microfluidic device (3D CFMD). Hydrodynamic parameters of 3D CFMD were adjusted to control morphologies and the sizes of copolymer aggregates. A simulation software, COMSOL Multiphysics, was used to simulate the mixing and diffusion of outer phase stream and inner phase stream to explore the mixing kinetics of two streams in the microchannels. Findings3D CFMD offered a novel platform for the continuous and controllable self-assembly of fluorinated gradient copolymer. Various morphologies of copolymer aggregates were obtained in 3D CFMD, but just spherical micelles were formed by a traditional solvent-inducing method. The flow velocity, initial water content of outer-phase stream, and the copolymer concentration of inner-phase stream had great effects on the morphology and size of copolymer aggregates. The simulation results made us a better understanding on the microfluidic self-assembly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.