Abstract
We report the synthesis and characterization of covalent dyads and multiads of electron acceptors (A) and donors (D), with the purpose of exploiting their nanophase separation behavior toward (a) two-dimensional (2D) surface patterning with well-defined integrated arrays of dissimilar molecular electronic features and (b) bulk self-assembly to noncovalent columnar versions of the so-called "double cable" systems, the likes of which could eventually provide side-by-side percolation pathways for electrons and holes in solar cells. Soluble, alkylated hexa-peri-hexabenzocoronenes (HBCs) bearing tethered anthraquinones (AQs) are shown by scanning tunneling microscopy (STM) to self-assemble at the solution-graphite interface into either defect-rich polycrystalline monolayers or extended 2D crystalline domains, depending on the number of tethered AQs. In the bulk, the thermal stability of the room-temperature HBC columnar phase is increased, which is attributed to the desired nanotriphase separation of HBC columns, insulating alkyl sheaths, and AQ units. Homeotropic alignment (columns normal to surfaces), predicted to be ideal for potential exploitation of such "double cables" in photovoltaic devices, is demonstrated.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.