Abstract

The promising carbohydrate-based block copolymer maltoheptaose-block-polystyrene (MH-b-PS) has been used for high-performance memory transistors and next generation nanolithography. In order to realize the potential of MH-b-PS especially in microelectronic applications, we firstly improved its synthetic method for obtaining large amount of copper-free MH-b-PS. The main improvement relies on the removal of the residual copper catalyst by using a chelating resin. Then, the microphase separation of copper-free MH-b-PS in both thin film and bulk states under different solvent vapor annealing conditions were investigated comprehensively and compared with our previous report by using both real-space and reciprocal-space techniques. A phase transition of MH-b-PS from hexagonal close-packed horizontal cylinders to face-centered cubic were observed when increasing the amount of tetrahydrofuran in the mixture annealing solvent of tetrahydrofuran and H2O. More details about self-assembled MH-b-PS nanostructures were analyzed by comparing grazing incidence small angle X-ray scattering patterns with corresponding atomic force microscopy phase images.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.