Abstract

Diblock copolymers having a random-coil polymer block (polystyrene, PS) connected to a side-group liquid crystal polymer (SGLCP) self-assemble in a nematic liquid crystal (LC), 4-pentyl-4′-cyanobiphenyl, into micelles with PS-rich cores and SGLCP-rich coronas. The morphologies of block copolymers with varying PS content are characterized as a function of temperature and concentration using small-angle neutron scattering, rheometry, and transmission electron microscopy. Unlike conventional solvents, the nematic LC can undergo a first-order transition between distinct fluid phases, accessing the regimes of both strong and slight selectivity in a single polymer/solvent pair. Micelles dissolve away above a microphase separation temperature (MST) that is often equal to the solution’s isotropization point, TNI. However, increasing or decreasing the polymer’s PS content can shift the MST to be above or below TNI, respectively, and in the former case, micelles abruptly swell with solvent at TNI. Comparable effect...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.