Abstract

Cholesterol self-assembles into weakly ordered aggregates when tethered to a crosslinked hydrogel network of poly(ethylene glycol) (PEG). PEG-diacrylate and cholesterol-PEG-acrylamide (PEG-chol) were co-polymerized in organic solvent and transferred to water for equilibrium swelling. Small-angle x-ray scattering revealed self-assembled cholesterol structures not present during network synthesis. At lower ratios of PEG-tethered cholesterol to PEG (<12% cholesterol based on total solid content), cholesterol aggregates into the dense, weakly ordered crosslink junctions of the PEG network. The hydrogel networks exhibited classic affine behavior during compressive mechanical testing, and cholesterol aggregation enhanced the elastic modulus. At high PEG-chol to PEG ratios (12–20% cholesterol based on total solid content), cholesterol self-assembles into domains with lamellar-like meso-ordering. The structural transition causes network deswelling and significantly reduces material brittleness upon deformation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.