Abstract

In this work we present that aggregation of charged and pH sensitive nanoparticles can be spatiotemporally controlled by an autonomous way using the chlorite-tetrathionate autocatalytic front, where the front regulates the electrostatic interaction between nanoparticles due to protonation of the capping (carboxylate-terminated) ligand. We found that the aggregation and sedimentation of nanoparticles in liquid phase with the effect of reversible binding of the autocatalyst (H(+)) play important roles in changing the front stability (mixing length) and the velocity of the front in both cases when the fronts propagate upward and downward. Calculation of interparticle interactions (electrostatic and van der Waals) with the measurement of front velocity revealed that the aggregation process occurs fast (within a few seconds) at the front position.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call