Abstract
The formation of nanorods, driven by the physicochemical phenomena during the freezing and after the aging of frozen ceria nanoparticle suspensions, is reported. During freezing of a dilute aqueous solution of CeO2 nanocrystals, some nuclei remain in solution while others are trapped inside micro- and nanometer voids formed within the growing ice front. Over time (2-3 weeks) the particles trapped within the nanometer-wide voids in the ice combine by an oriented attachment process to form ceria nanorods. The experimental observations are consistent with molecular dynamics simulations of particle aggregation in constrained environments. These observations suggest a possible strategy for the templated formation of nanostructures through self-assembly by exploiting natural phenomena, such as voids formed during freezing of water. This research suggests a very simple, green chemical route to guide the formation of one- and three-dimensional self-assembled nanostructures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.