Abstract

The ability to chemically synthesize desired molecules followed by their in situ self-assembly in reaction solution has attracted much attention as a simple and environmentally friendly method to produce self-assembled nanostructures. In this study, α-d-glucose 1-phosphate monomers and cellobiose primers were subjected to cellodextrin phosphorylase-catalyzed reverse phosphorolysis reactions in aqueous solution in order to synthesize cellulose oligomers, which were then in situ self-assembled into crystalline nanoribbon network structures. The average degree-of-polymerization (DP) values of the cellulose oligomers were estimated to be approximately 7-8 with a certain degree of DP distribution. The cellulose oligomers crystallized with the cellulose II allomorph appeared to align perpendicularly to the base plane of the nanoribbons in an antiparallel manner. Detailed analyses of reaction time dependence suggested that the production of nanoribbon network structures was kinetically controlled by the amount of water-insoluble cellulose oligomers produced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call