Abstract

A self-assembled nanocomposite of lamellar BiOBr covalently bonded with conductive network of dispersive one-dimensional carbon nanotubes (1D CNT) and two-dimensional reduced graphitic-like flakes (2D GF) had been in situ constructed using one-pot facile solvothermal technique. Through self-assembly, BiOBr/CNT/GF (BiOBr/CG) displayed three-dimensional architectures in which a strong interfacial contact interaction and covalent banding between BiOBr nanostructures and CNT/GF network appeared. Furthermore, visible-light-driven catalytic activity of BiOBr/CG for RhB dye degradation was superior to that of pure BiOBr or BiOBr/C. Interestingly, the photodegradation activity of the BiOBr/CG nanocomposite could be improved further by subsequent facile annealing treatment, in which the annealed BiOBr/CG-DS had degraded almost 97.9% of RhB dye within only 100 min of visible-light irradiation. Moreover, analysis of the photodegradation mechanism revealed that the repression of electron-hole recombination in the nanocomposites, with sufficient covalent interfacial contact with CNT/GF as effective electron collecting and transferring system, were responsible for the outstanding photocatalytic performance. This effect, in turn, led to the continuous generation of O2− and OH reactive oxygen species for the degradation of RhB dye, which was verified by active species trapping and ESR spectra.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.