Abstract

Self-assemblies fabricated from dendrimers and amphiphilic polymers have demonstrated remarkable performances and a wide range of applications. Direct self-assembly of hyperbranched polymers into highly ordered macrostructures with heat-resistance remains a big challenge due to the weak amphiphilicity of the polymers. Here, we report the self-assembly of amphiphilic amido-ended hyperbranched polyester (HTDA-2) into millimeter-size dendritic films using combined hydrogen bond interaction and solvent induction. The self-assembly process and mechanism have been studied. Hydrogen bond interaction between amido-ended groups assists the aggregation of inner and outer chains of the HTDA-2, resulting in phase separation and micelle formation. Some micelles attach to and grow on the glass substrate like seedlings. Other micelles move to the seedlings and connect with their branches via solvent induction and hydrogen bond interaction, leading to the fabrication of highly ordered crystalline dendritic films that show high heat-resistance. HTDA-2 can further self-assemble into sheet crystals on the dendritic films.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call