Abstract

The last decade has witnessed rapid developments in aggregation-induced emission (AIE). In contrast to traditional aggregation, which causes luminescence quenching (ACQ), AIE is a reverse phenomenon that allows robust luminescence to be retained in aggregated and solid states. This makes it possible to fabricate various highly efficient luminescent materials, which opens new paradigms in a number of fields, such as imaging, sensing, medical therapy, light harvesting, light-emitting devices, and organic electronic devices. Of the various important features of AIE molecules, their self-assembly behavior is very attractive because the formation of a well-defined emissive nanostructure may lead to advanced applications in diverse fields. However, due to the nonplanar topology of AIEgens, it is not easy for them to self-assemble into well-defined structures. To date, some strategies have been proposed to achieve the self-assembly of AIEgens. Herein, we summarize the most recent approaches for the self-assembly of AIE molecules. These approaches can be sorted into two classes: 1) covalent molecular design and 2) noncovalent supramolecular interactions. We hope this will inspire more excellent work in the field of AIE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.