Abstract

Active catalysts for water oxidation to evolve O(2) are required for the construction of artificial photosynthetic devices that are expected to be promising energy-providing systems in the future. The citrate-stabilized IrO(2) colloid was self-assembled onto an indium tin oxide (ITO) electrode to form a monolayer of the colloidal IrO(2) particles when it was dipped in the colloid solution. The self-assembly could be achieved by a chemical interaction between carboxylate groups on the citrate stabilizer and hydroxyl groups on the ITO surface to form ester bonds. Efficient electrocatalysis for water oxidation was demonstrated using the electrode modified by the self-assembled IrO(2) colloid to yield the highest turnover frequency ((2.3-2.5) x 10(4) h(-1)) of IrO(2) in the hitherto-reported catalysts for electrochemical water oxidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.