Abstract

The self-assembly of a highly incompatible siloxane containing semi-fluorinated diblock copolymer, polytrifluoro propyl methylsiloxane-b-polystyrene (SiF-PS), in toluene, a selective solvent for polystyrene, was studied using Small Angle Neutron Scattering. Incompatibility is often enhanced by inserting fluorinated segments into one of the blocks and as a result not only the interchain interactions are changed but also the rigidity of the blocks. Herein the incorporation of siloxane into the backbone of a semi-fluorinated block maintains its flexibility and allows separation of the effects of direct interactions due to fluorine atoms from those of rigidity. Measurements were carried out in dilute solutions below 1 wt%, at volume fractions ϕSiF ranging from 0.0 to 0.5. The high incompatibility of the SiF block drives aggregation at low volume fractions of the SiF block, where spherical core–Gaussian shell aggregates are detected at ϕSiF = 0.16. In the symmetric SiF-PS complex fluid, elongated micelles were observed. The micelles exhibited unique temperature stability in comparison with the aggregates formed by diblock-copolymers in the lower segregation regime. As the temperature increases the micelles dissociate into free chains to form unimolecular micelles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call