Abstract

AbstractSelf‐assembly of host molecules in aqueous media via metal–ligand coordination is well developed. However, the preparation of purely covalent counterparts in water has remained a formidable task. An anionic tetrahedron cage was successfully self‐assembled in a [4+4] manner by condensing a trisamine and a trisformyl in water. Even although each individual imine bond is rather labile and apt to hydrolyze in water, the tetrahedron is remarkably stable or inert due to multivalence. The tetrahedral cages, as well as its neutral counterparts dissolved in organic solvent, have homochirality, namely that their four propeller‐shaped trisformyl residues adopt the same rotational conformation. The cage is able to take advantage of hydrophobic effect to accommodate a variety of guest molecules in water. When a chiral guest was recognized, the formation of one enantiomer of the cage became more favored relative to the other. As a consequence, the cage could be produced in an enantioselective manner. The tetrahedron is able to maintain its chirality after removal of the chiral guest—probably on account of the cooperative occurrence of intramolecular forces that restrict the intramolecular flipping of phenyl units in the cage framework.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.