Abstract

A three-dimensional (3D) self-assembled AuNPs/Ti3C2 MXene hydrogel (AuNPs/Ti3C2 MXH) nanocomposite was prepared for the fabrication of a novel microRNA-122 electrochemical biosensor. The 3D hydrogel structure was gelated from two-dimensional MXene nanosheets with the assistance of graphite oxide and ethylenediamine. MXene hydrogels supported the in situ formation of Au nanoparticles (AuNPs) that predominantly exploring the (111) facet, and these AuNPs are utilized as carriers for hairpin DNA (hpDNA) probes, facilitating DNA hybridization. MXene acted as both a reductant and stabilizer, significantly improving the electrochemical signal. In addition, the conjugation of PAMAM dendrimer-encapsulated AuNPs and H-DNA worked as an ideal bridge to connect targets and efficient electrochemical tags, providing a high amplification efficiency for the sensing of microRNA-122. A linear relationship between the peak currents and the logarithm of the concentrations of microRNA-122 from 1.0 × 10-2 to 1.0 × 102 fM(I = 1.642 + 0.312 lgc, R2 = 0.9891), is obtained. The detection limit is 0.8 × 10-2 fM (S/N = 3). The average recovery for human serum detection ranged from 97.32 to 101.4% (RSD < 5%).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call